General technique for analytical derivatives of post-projected Hartree-Fock
نویسندگان
چکیده
منابع مشابه
Symmetry-projected Hartree-Fock-Bogoliubov Equations
Symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations are derived using the variational ansatz for the generalized one-body density-matrix in the Valatin form. It is shown that the projected-energy functional can be completely expressed in terms of the HFB density-matrix and the pairing-tensor. The variation of this projected-energy is shown to result in HFB equations with modified express...
متن کاملImplementation of analytical Hartree-Fock gradients for periodic systems
We describe the implementation of analytical Hartree-Fock gradients for periodic systems in the code CRYSTAL, emphasizing the technical aspects of this task. The code is now capable of calculating analytical derivatives with respect to nuclear coordinates for systems periodic in 0, 1, 2 and 3 dimensions (i.e. molecules, polymers, slabs and solids). Both closed-shell restricted and unrestricted ...
متن کاملAnalytical Gradients of Hartree-Fock Exchange with Density Fitting Approximations.
We extend the local exchange (LK) algorithm [Aquilante, F.; Pedersen, T. B.; Lindh, R. J. Chem. Phys.2007, 126, 194106] to the calculation of analytical gradients with density fitting. We discuss the features of the screening procedure and demonstrate the possible advantages of using this formulation, which is easily interfaced to a standard integral-direct gradient code. With auxiliary basis s...
متن کاملParallelization of analytical Hartree±Fock and density functional theory Hessian calculations. Part I: parallelization of coupled- perturbed Hartree±Fock equations
Solving the coupled-perturbed Hartree±Fock (CPHF) equations is the most time consuming part in the analytical computation of second derivatives of the molecular energy with respect to the nuclei. This paper describes a unique parallelization approach for solving the CPHF equations. The computational load is divided by the nuclear perturbations and distributed evenly among the computing nodes. T...
متن کاملCapturing static and dynamic correlations by a combination of projected Hartree-Fock and density functional theories.
This paper explores the possibility of combining projected Hartree-Fock and density functional theories for treating static and dynamic correlations in molecular systems with mean-field computational cost. The combination of spin-projected unrestricted Hartree-Fock (SUHF) with the TPSS correlation functional (SUHF+TPSS) yields excellent results for non-metallic molecular dissociations and singl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2017
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4976145